3.135 \(\int \frac{\sqrt{a+a \sin (e+f x)} (A+B \sin (e+f x))}{\sqrt{c-c \sin (e+f x)}} \, dx\)

Optimal. Leaf size=100 \[ \frac{a B \cos (e+f x) \sqrt{c-c \sin (e+f x)}}{c f \sqrt{a \sin (e+f x)+a}}-\frac{a (A+B) \cos (e+f x) \log (1-\sin (e+f x))}{f \sqrt{a \sin (e+f x)+a} \sqrt{c-c \sin (e+f x)}} \]

[Out]

-((a*(A + B)*Cos[e + f*x]*Log[1 - Sin[e + f*x]])/(f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]])) + (a*B
*Cos[e + f*x]*Sqrt[c - c*Sin[e + f*x]])/(c*f*Sqrt[a + a*Sin[e + f*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.337057, antiderivative size = 100, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 40, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.125, Rules used = {2971, 2738, 2737, 2667, 31} \[ \frac{a B \cos (e+f x) \sqrt{c-c \sin (e+f x)}}{c f \sqrt{a \sin (e+f x)+a}}-\frac{a (A+B) \cos (e+f x) \log (1-\sin (e+f x))}{f \sqrt{a \sin (e+f x)+a} \sqrt{c-c \sin (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[a + a*Sin[e + f*x]]*(A + B*Sin[e + f*x]))/Sqrt[c - c*Sin[e + f*x]],x]

[Out]

-((a*(A + B)*Cos[e + f*x]*Log[1 - Sin[e + f*x]])/(f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]])) + (a*B
*Cos[e + f*x]*Sqrt[c - c*Sin[e + f*x]])/(c*f*Sqrt[a + a*Sin[e + f*x]])

Rule 2971

Int[Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[B/d, Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n + 1), x], x
] - Dist[(B*c - A*d)/d, Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f
, A, B, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 2738

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[
(-2*b*Cos[e + f*x]*(c + d*Sin[e + f*x])^n)/(f*(2*n + 1)*Sqrt[a + b*Sin[e + f*x]]), x] /; FreeQ[{a, b, c, d, e,
 f, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[n, -2^(-1)]

Rule 2737

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(
a*c*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), Int[Cos[e + f*x]/(c + d*Sin[e + f*x]),
x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 2667

Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(b^p*f), S
ubst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x]
&& IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] && (GeQ[p, -1] ||  !IntegerQ[m + 1/2])

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rubi steps

\begin{align*} \int \frac{\sqrt{a+a \sin (e+f x)} (A+B \sin (e+f x))}{\sqrt{c-c \sin (e+f x)}} \, dx &=(A+B) \int \frac{\sqrt{a+a \sin (e+f x)}}{\sqrt{c-c \sin (e+f x)}} \, dx-\frac{B \int \sqrt{a+a \sin (e+f x)} \sqrt{c-c \sin (e+f x)} \, dx}{c}\\ &=\frac{a B \cos (e+f x) \sqrt{c-c \sin (e+f x)}}{c f \sqrt{a+a \sin (e+f x)}}+\frac{(a (A+B) c \cos (e+f x)) \int \frac{\cos (e+f x)}{c-c \sin (e+f x)} \, dx}{\sqrt{a+a \sin (e+f x)} \sqrt{c-c \sin (e+f x)}}\\ &=\frac{a B \cos (e+f x) \sqrt{c-c \sin (e+f x)}}{c f \sqrt{a+a \sin (e+f x)}}-\frac{(a (A+B) \cos (e+f x)) \operatorname{Subst}\left (\int \frac{1}{c+x} \, dx,x,-c \sin (e+f x)\right )}{f \sqrt{a+a \sin (e+f x)} \sqrt{c-c \sin (e+f x)}}\\ &=-\frac{a (A+B) \cos (e+f x) \log (1-\sin (e+f x))}{f \sqrt{a+a \sin (e+f x)} \sqrt{c-c \sin (e+f x)}}+\frac{a B \cos (e+f x) \sqrt{c-c \sin (e+f x)}}{c f \sqrt{a+a \sin (e+f x)}}\\ \end{align*}

Mathematica [C]  time = 1.17749, size = 120, normalized size = 1.2 \[ -\frac{\sqrt{a (\sin (e+f x)+1)} \left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right ) \left (B \sin (e+f x)+(A+B) \left (2 \log \left (i-e^{i (e+f x)}\right )-i f x\right )\right )}{f \sqrt{c-c \sin (e+f x)} \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[a + a*Sin[e + f*x]]*(A + B*Sin[e + f*x]))/Sqrt[c - c*Sin[e + f*x]],x]

[Out]

-(((Cos[(e + f*x)/2] - Sin[(e + f*x)/2])*Sqrt[a*(1 + Sin[e + f*x])]*((A + B)*((-I)*f*x + 2*Log[I - E^(I*(e + f
*x))]) + B*Sin[e + f*x]))/(f*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*Sqrt[c - c*Sin[e + f*x]]))

________________________________________________________________________________________

Maple [B]  time = 0.367, size = 394, normalized size = 3.9 \begin{align*} -{\frac{1}{f \left ( -1+\cos \left ( fx+e \right ) -\sin \left ( fx+e \right ) \right ) } \left ( A\cos \left ( fx+e \right ) \ln \left ( 2\, \left ( \cos \left ( fx+e \right ) +1 \right ) ^{-1} \right ) -2\,A\cos \left ( fx+e \right ) \ln \left ( -{\frac{-1+\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }} \right ) +A\sin \left ( fx+e \right ) \ln \left ( 2\, \left ( \cos \left ( fx+e \right ) +1 \right ) ^{-1} \right ) -2\,A\sin \left ( fx+e \right ) \ln \left ( -{\frac{-1+\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }} \right ) +B \left ( \cos \left ( fx+e \right ) \right ) ^{2}-B\sin \left ( fx+e \right ) \cos \left ( fx+e \right ) +B\cos \left ( fx+e \right ) \ln \left ( 2\, \left ( \cos \left ( fx+e \right ) +1 \right ) ^{-1} \right ) -2\,B\cos \left ( fx+e \right ) \ln \left ( -{\frac{-1+\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }} \right ) +B\sin \left ( fx+e \right ) \ln \left ( 2\, \left ( \cos \left ( fx+e \right ) +1 \right ) ^{-1} \right ) -2\,B\sin \left ( fx+e \right ) \ln \left ( -{\frac{-1+\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }} \right ) -A\ln \left ( 2\, \left ( \cos \left ( fx+e \right ) +1 \right ) ^{-1} \right ) +2\,A\ln \left ( -{\frac{-1+\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }} \right ) +B\sin \left ( fx+e \right ) -B\ln \left ( 2\, \left ( \cos \left ( fx+e \right ) +1 \right ) ^{-1} \right ) +2\,B\ln \left ( -{\frac{-1+\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }} \right ) -B \right ) \sqrt{a \left ( 1+\sin \left ( fx+e \right ) \right ) }{\frac{1}{\sqrt{-c \left ( -1+\sin \left ( fx+e \right ) \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sin(f*x+e))*(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2),x)

[Out]

-1/f*(A*cos(f*x+e)*ln(2/(cos(f*x+e)+1))-2*A*cos(f*x+e)*ln(-(-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))+A*sin(f*x+e)
*ln(2/(cos(f*x+e)+1))-2*A*sin(f*x+e)*ln(-(-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))+B*cos(f*x+e)^2-B*sin(f*x+e)*co
s(f*x+e)+B*cos(f*x+e)*ln(2/(cos(f*x+e)+1))-2*B*cos(f*x+e)*ln(-(-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))+B*sin(f*x
+e)*ln(2/(cos(f*x+e)+1))-2*B*sin(f*x+e)*ln(-(-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))-A*ln(2/(cos(f*x+e)+1))+2*A*
ln(-(-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))+B*sin(f*x+e)-B*ln(2/(cos(f*x+e)+1))+2*B*ln(-(-1+cos(f*x+e)+sin(f*x+
e))/sin(f*x+e))-B)*(a*(1+sin(f*x+e)))^(1/2)/(-1+cos(f*x+e)-sin(f*x+e))/(-c*(-1+sin(f*x+e)))^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 1.57322, size = 236, normalized size = 2.36 \begin{align*} \frac{B{\left (\frac{2 \, \sqrt{a} \log \left (\frac{\sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} - 1\right )}{\sqrt{c}} - \frac{\sqrt{a} \log \left (\frac{\sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + 1\right )}{\sqrt{c}} + \frac{2 \, \sqrt{a} \sqrt{c} \sin \left (f x + e\right )}{{\left (c + \frac{c \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}}\right )}{\left (\cos \left (f x + e\right ) + 1\right )}}\right )} + A{\left (\frac{2 \, \sqrt{a} \log \left (\frac{\sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} - 1\right )}{\sqrt{c}} - \frac{\sqrt{a} \log \left (\frac{\sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + 1\right )}{\sqrt{c}}\right )}}{f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sin(f*x+e))*(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

(B*(2*sqrt(a)*log(sin(f*x + e)/(cos(f*x + e) + 1) - 1)/sqrt(c) - sqrt(a)*log(sin(f*x + e)^2/(cos(f*x + e) + 1)
^2 + 1)/sqrt(c) + 2*sqrt(a)*sqrt(c)*sin(f*x + e)/((c + c*sin(f*x + e)^2/(cos(f*x + e) + 1)^2)*(cos(f*x + e) +
1))) + A*(2*sqrt(a)*log(sin(f*x + e)/(cos(f*x + e) + 1) - 1)/sqrt(c) - sqrt(a)*log(sin(f*x + e)^2/(cos(f*x + e
) + 1)^2 + 1)/sqrt(c)))/f

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{{\left (B \sin \left (f x + e\right ) + A\right )} \sqrt{a \sin \left (f x + e\right ) + a} \sqrt{-c \sin \left (f x + e\right ) + c}}{c \sin \left (f x + e\right ) - c}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sin(f*x+e))*(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

integral(-(B*sin(f*x + e) + A)*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)/(c*sin(f*x + e) - c), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a \left (\sin{\left (e + f x \right )} + 1\right )} \left (A + B \sin{\left (e + f x \right )}\right )}{\sqrt{- c \left (\sin{\left (e + f x \right )} - 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sin(f*x+e))*(a+a*sin(f*x+e))**(1/2)/(c-c*sin(f*x+e))**(1/2),x)

[Out]

Integral(sqrt(a*(sin(e + f*x) + 1))*(A + B*sin(e + f*x))/sqrt(-c*(sin(e + f*x) - 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \sin \left (f x + e\right ) + A\right )} \sqrt{a \sin \left (f x + e\right ) + a}}{\sqrt{-c \sin \left (f x + e\right ) + c}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sin(f*x+e))*(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate((B*sin(f*x + e) + A)*sqrt(a*sin(f*x + e) + a)/sqrt(-c*sin(f*x + e) + c), x)